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Abstract

We investigated the effects of fault-related folding mechanisms along a single fault that is pinned on both ends, upsection and downsection.

Using a numerical model we produced flanking structures under plane strain transtension for the whole range between simple shear, general

shear and pure shear, with layer-parallel shortening parallel and shear zone widening normal to the shear zone boundaries. Under these

boundary conditions, contractional flanking folds with thrusting kinematics are the structures that are most likely to form and s-type flanking

folds develop stable orientations. Comparison with natural examples reveals that contractional flanking structures occur from the outcrop

scale within ductile shear zones, where they can be used as kinematic indicators in special cases, up to the mesoscopic scale within fold and

thrust belts. The fundamental differences of our model to existing fault-related fold models like fault-propagation folds, fault-bend folds or

break-thrust folds are: (1) the fault does not necessarily maintain a stable orientation but may rotate during progressive development; (2) the

drag can change from reverse to normal along the fault; (3) the displacement along the fault has its maximum in the centre of the fault and

decreases in both directions, downsection and upsection towards fixed fault tips.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenon of various types of deflections of a rock

fabric near the margin of faults, dikes or veins, which in

some cases can form discrete internal slip surfaces within

ductile shear zones, has been recently summarized by

Passchier (2001), who introduced the term flanking

structure for the resulting features. Early numerical models

(e.g. Grasemann and Stüwe, 2001) investigated mainly

simple shear in the formation of flanking structures and

associated drag effects and focused on the effects of the

rheological relationship between the fault (here called the

cross-cutting element, CE) and the surrounding rock fabric

(the host element, HE). If the CE has a significantly lower

viscosity than the HE, the CE accommodates slip whereby

marker horizons are either displaced in the same or opposite
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direction as the overall sense of shear along the shear zone

(Fig. 1), hence they are either co- or counter-shearing to the

bulk sense of shear.

Grasemann et al. (2003) concluded that within a regime

of thinning general shear flow (type D plane strain

transpression of Fossen and Tikoff (1998)) between the

end members of simple shear and pure shear, the resulting

flanking structures can be classified into shear bands, a-type

flanking folds and s-type flanking folds (Fig. 1). These

results have been confirmed and extended recently for

simple shear by analogue experiments from Exner et al.

(2004). Their classification is based on the following three

criteria: (1) the extensional or contractional offset of central

markers, (2) the co- or counter-shearing sense of slip along

CEs with respect to the bulk shear sense, and (3) the normal

or reverse drag (Hamblin, 1965) of the central markers

relative to the shear sense along the CEs, where normal drag

occurs if the deflection of the marker line is convex in the

direction of shear, whereas reverse drag is defined as the

concave deflection in the direction of shear (Fig. 1).

Note that for the description of flanking structures, no
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Fig. 1. Four general geometrical types (1–4) of numerically modelled flanking structures in dextral transpression and transtension, all with

similar finite bulk strain: s-type, a-type flanking folds and shear bands are distinguished by their contractional vs. extensional offset along the

cross-cutting element (CE) and their normal vs. reverse drag of the central marker line. Note that each structure when reflected along a

vertical plane exhibits a mirror image of a different type of flanking structure.
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unique terminology exists at the moment, as it can either be

based on a genetic or purely descriptive (non-genetic)

classification. Purely descriptive classifications, like those

used by Passchier (2001) and a new one by Coelho et al.

(submitted), have the advantage over a genetic one, that they

are uniformly applicable in the field without any knowledge

of the kinematic frame.

In this article, however, we follow the genetic terminol-

ogy in order to make our results directly comparable with

earlier works (Grasemann and Stüwe, 2001; Grasemann et

al., 2003) about flanking structures that have been generated

by forward modelling. If the kinematic frame is known, this

classification is useful for understanding the progressive

evolution of possible geometries even at higher strains

(Exner et al., 2004; Kocher and Mancktelow, 2004).

In the present work, we reversed the boundary conditions

of Grasemann et al. (2003) of transpressional shear flow and

modelled widening shear zones (type D plane strain

transtension of Fossen and Tikoff (1998)) covering the

whole range between simple shear, general shear and pure

shear, in which layer parallel shortening rather than

extension takes place parallel to the shear zone boundaries.

For the sake of simplicity in this article, we use the terms

transtension and transpression for the modelled isochoric

plane strain flow, although we are fully aware of the

problems of three-dimensional out-of-plane deformation

and mixing or confusion of stress and strain related terms

(Marrett and Peacock, 1999). We will show that for different

kinematic vorticity numbers within plane strain transpres-

sion and transtension, four general geometrical types of

flanking structures can exist, based on (1) the extensional or

contractional offset together with (2) the normal or reverse

drag of the central marker (Fig. 1). Although each of these

four general types can easily be identified in the field

without ancillary information about the bulk shear sense, a
corresponding mirror image also exists and therein a

problem. To clearly distinguish each structure from its

mirror image, additional information (most usually the bulk

shear sense of the shear zone) is needed.

Although Grasemann et al. (2003) have already shown

that shear bands and a-type flanking folds are ambiguous

shear sense indicators, the thrusting kinematics of s-type

flanking folds have been regarded as reliable indicators. The

data we present reveal that flanking folds formed in such

contractional thrusting kinematics can also lead to the

wrong shear sense interpretation, if contractional a-type and

s-type flanking folds are misinterpreted. Moreover, our

results further illustrate that each tectonic regime such as

extension or contraction, favours the development of a

particular type of flanking structure. Our work thereby

shows how flanking structures can be used as an auxiliary

tool to distinguish between transpressional and transten-

sional tectonic settings. Finally, the modelling results

presented in this paper are compared with large-scale

outcrop natural examples.

A crucial re-assessment that we develop in this article is

that, although kinematically completely different, our

modelled s-type flanking folds closely resemble fault

propagation folds. Using an example from the Himalayas,

we suggest that these unrecognised types of fault-related

folds may be quite common, and thus extensively

misinterpreted in previously studied fold and thrust belts.
2. Numerical modelling

For the investigation of flanking structures forming

within a linear viscous medium (HE) around a pinned slip

surface (CE) under transtensional flow, as well as for direct

comparison with those forming in transpressional flow, we
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used the same initial model setup, boundary conditions, and

rheology as Grasemann et al. (2003), reversing the applied

velocities at the upper and lower boundaries (Fig. 2a). The

same two-dimensional finite element program BASIL of

Barr and Housemann (1992, 1996) has been used.
2.1. Model setup geometry and boundary conditions

The simulated fault has been modelled as a pinned slip

surface (CE) within the central 25% of the total shear zone

width and is oriented at a series of increasing fault angles

(f10–1708) to the shear zone boundaries (Fig. 2a). The

initial model setup geometry that was used is detailed in

Grasemann et al. (2003). The length of the shear zone in the

spatial xi-direction is infinite, with faults at equally spaced

intervals. The modelled region lies between two of these
Fig. 2. Illustration of boundary conditions used for numerically modelling

the velocities applied as boundary conditions; f is the fault angle betw

deformations of a unit square for various flow types. The stretching (tran

the xi-direction. a—angle between eigenvectors, b—angle between the sh

the finite deformations shown in (b). (d) Mohr circle construction illustra

2. Instantaneous stretching rates and angular velocities of kinematic axe
faults and the distance between them is three times the width

of the shear zone in the xj-direction. For CEs with very

shallow fault angles (fZ208 and 108) this distance has been

chosen to be four and five times the shear zone width,

respectively, to avoid undesirable interferences of neigh-

bouring CEs.

All components of stress and deformation within the

shear zone and at the lateral boundaries are continuous,

except for the region along the fault, where the shear stress

is zero and the normal stress is continuous.

Marker lines within the host element (HE) are oriented

parallel to the shear zone boundaries to simulate the fault

drag effects on a foliation or layering.

The displacement boundary conditions at the top and

bottom of the modelled shear zone are given by the

components of the velocity gradient tensor L for
transpression and transtension. (a) Initial FEM setup; ui and uj are

een the CE and the shear zone boundary. (b) Examples of finite

spression) or the shortening (transtension) eigenvectors are fixed to

ear zone boundary and ISA2. (c) Finite strain ellipses resulting from

ting the velocity gradient tensor L for a constant stretching rate SZ
s of the flow are represented as points on the circle.
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homogeneous isochoric plane strain flow (Fig. 2a):
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In transtensional flow, the shortening eigenvector of the

flow is parallel to the shear zone boundaries, whereas in

transpressional flow the stretching eigenvector is parallel to

these boundaries (Fig. 2b). We assumed steady flow, in

which the incremental strain matrix does not change during

the deformation history, i.e. the principal instantaneous

stretching directions and the kinematic vorticity number Wk

remain constant. The flow type is defined by the angle a

between the stretching and the shortening eigenvector of the

flow and varies between K908 and 08 for transtension and

between C908 and 08 for transpression. As cosaZWk, the

kinematic vorticity number ranges between the ideal end

members WkZ1 for simple shear and WkZ0 for pure shear.

The angle b defines the orientation of the shortening

instantaneous stretching axes (ISA2) and bC908 is the

orientation of the orthogonal instantaneous stretching axes

(ISA1). Along these two axes, minimum and maximum

stretching rates of material lines during flow occur. They are

related to a by bZ(aC908)/2. For the comparison of finite

deformation under different flow types, we followed the

approach of Grasemann et al. (2003) and used a constant

stretching rate factor (Passchier, 1987) of SZ2, which is

illustrated in Fig. 2d by an off-axis Mohr circle, where the

stretching rate (_3) is plotted against the angular velocity (u).
If S is constant, all circles have the same diameter and

differences in Wk are illustrated by shifting the Mohr circle

along the u-axis, where the distance between the centre of

the Mohr circle and the origin defines Wk. The angles

measured anticlockwise between the kinematic axes in the

physical space in Fig. 2b (instantaneous stretching axes and

eigenvectors of the flow) are plotted as points with double

angles in a clockwise sense along the Mohr circle.

For a given kinematic vorticity number Wk and a

stretching rate factor S, the components of L can be

calculated by (modified and corrected after Passchier

(1987)):
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The corresponding deformation gradient tensor D given

by Ramberg (1975) and combined with Eq. (3) is (corrected

after Grasemann et al. (2003)):
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where t is the time. For isochoric plane strain flow the

components D11 and D22 of the deformation gradient tensor

correspond to the pure shear components k1 and k2,

respectively, where:

k1
k2

Z 1 (5)

which means that the volume change during deformation

DVZ0. D12 is the effective shear strain G of Fossen and

Tikoff (1993). Alternatively, G can be calculated from the

pure shear component k and Wk using equation (3) of

Grasemann et al. (1999). The components of L of the

different models, the derived deformation gradient tensor

after tZ1, and the finite deformation parameters are listed in

Table 1. Also note that for a constant stretching rate factor

(S) the ellipticity (R) of the finite strain ellipse after the time

increment tZ1 is not equal for different kinematic

vorticities, but varies between RZ5.8 and 7.4 between the

simple and pure shear end members, respectively (Fig. 2c).
3. Instantaneous structure development

For a series of increasing initial orientation of the CE

(fZ10–1708), Fig. 3 shows different diagrams of the

instantaneous deflections of the central marker line over a

range of pure and simple shear transtension (aZ0–908),

which can be directly compared with instantaneous deflec-

tions in transpression (see fig. 4 of Grasemann et al. (2003)).

In each diagram the vertical instantaneous velocity uj is

plotted for each central marker line between two CEs.

Different letter codes (C, F, G–J and L–Q) are used to adopt

and extend the classification for flanking structures of

Grasemann et al. (2003), which is shown in Fig. 4.

Different outlines of the central marker lines in Fig. 3

indicate the sense of rotation of the CE, which can either be

co-rotating, counter-rotating or non-rotating with respect to

the bulk dextral shear sense of the modelled shear zone.

Based on these vertical velocity profiles the following criteria

are used for the classification of flanking structures (Fig. 1):
(1)
 The offset along the CE can be either extensional or

contractional.
(2)
 The sense of shear along the CE can be either co-

shearing or counter-shearing compared with the bulk

shear sense.
(3)
 The drag of the central marker line along the CE can be

either normal or reverse.



Table 1

List of the deformation parameters used for transtensional finite element models (corresponding parameters for transpression are listed in Grasemann et al., 2003): a—angle between eigenvectors of flow; Wk—

kinematic vorticity number; b—angle between ISA2 and coordinate system: bZ(90Ca)/2; S—stretching rate factor; Lij—component of velocity gradient tensor L (fig. 2 in Passchier, 1987); Dij—component of

rotated general position gradient tensor with DjiZ0 (Eq. (38) in Ramberg, 1975); 1Ce1, 1Ce2—principal strain axes of finite strain ellipsoid; R—ellipticity of finite strain ellipse

a Wk b S Lii Lij Lji Ljj Dii Dij Dji Djj 1Ce1 1Ce2 R

K90 0 0 K2 K1 0 0 1 0.367879 0 0 2.718281828 2.718282 0.367879 7.389056

K85 K0.087155743 2.5 K2 K0.996195 0.174311 0 0.996195 0.369282 0.204607603 0 2.707957601 2.715822 0.368213 7.375687

K80 K0.173648178 5 K2 K0.984808 0.347296 0 0.984808 0.373511 0.406219648 0 2.677297133 2.70853 0.369204 7.336133

K75 K0.258819045 7.5 K2 K0.965926 0.517638 0 0.965926 0.380631 0.601971505 0 2.627218879 2.696667 0.370828 7.272015

K70 K0.342020143 10 K2 K0.939693 0.68404 0 0.939693 0.390748 0.789250064 0 2.559194654 2.680656 0.373043 7.185916

K65 K0.422618262 12.5 K2 K0.906308 0.845237 0 0.906308 0.404013 0.965794795 0 2.475166798 2.661056 0.375791 7.081218

K60 K0.5 15 K2 K0.866025 1 0 0.866025 0.420620 1.129772083 0 2.377442675 2.638541 0.378997 6.961901

K55 K0.573576436 17.5 K2 K0.819152 1.147153 0 0.819152 0.440805 1.279818396 0 2.26857537 2.61387 0.382575 6.832315

K50 K0.64278761 20 K2 K0.766044 1.285575 0 0.766044 0.464848 1.415050804 0 2.15124005 2.587849 0.386421 6.696965

K45 K0.707106781 22.5 K2 K0.707107 1.414214 0 0.707107 0.493069 1.53504629 0 2.028114982 2.561309 0.390425 6.560302

K40 K0.766044443 25 K2 K0.642788 1.532089 0 0.642788 0.525825 1.639793734 0 1.901774903 2.535066 0.394467 6.426558

K35 K0.819152044 27.5 K2 K0.573576 1.638304 0 0.573576 0.563506 1.729624314 0 1.774602468 2.509903 0.398422 6.299614

K30 K0.866025404 30 K2 K0.5 1.732051 0 0.5 0.606531 1.805127089 0 1.648721271 2.486546 0.402164 6.182909

K25 K0.906307787 32.5 K2 K0.422618 1.812616 0 0.422618 0.655329 1.86705688 0 1.525951671 2.465643 0.405574 6.079396

K20 K0.939692621 35 K2 K0.34202 1.879385 0 0.34202 0.710334 1.916241201 0 1.407788655 2.447758 0.408537 5.991521

K15 K0.965925826 37.5 K2 K0.258819 1.931852 0 0.258819 0.771963 1.953492262 0 1.295399375 2.433359 0.410955 5.921234

K10 K0.984807753 40 K2 K0.173648 1.969616 0 0.173648 0.840593 1.97952897 0 1.189636951 2.42281 0.412744 5.870009

K5 K0.996194698 42.5 K2 K0.087156 1.992389 0 0.087156 0.916534 1.99491276 0 1.091066592 2.416376 0.413843 5.838872

0 K1 45 K2 0 2 0 0 1.000000 2 0 1 2.414214 0.414214 5.828427
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Based on these three criteria, Fig. 4 gives a detailed

overview of the instantaneous structural development for

the full range of possible initial fault angles f calculated in

108 steps. For the whole range of transpression and

transtension, three types of instantaneously developing

flanking structures can be distinguished, and these are

presented in three major fields in Fig. 4. These types are: (1)

s-type flanking folds, which reveal contractional offset and

are co-shearing, (2) a-type flanking folds, which can have

both contractional or extensional offset, but they are

counter-shearing, and (3) shear bands, which reveal an

extensional offset and are co-shearing.

The fields are subdivided by the non-shearing, oblique

instantaneous stretching axes (ISA1 and ISA2) where the

shear sense changes from co-shearing to counter-shearing

along ISA2 (i.e. from shear bands to a-type flanking folds)

and from counter-shearing back to co-shearing along ISA1

(i.e. from a-type flanking folds to s-type flanking folds). All

three types can either develop with a normal or reverse drag

effect. While a-type flanking folds always co-rotate during

progressive deformation, s-type flanking folds and shear

bands can either co- or counter-rotate. Correspondingly,

these fields can be subdivided along lines where no rotation

occurs and structures become stable or metastable.

If the CE is oriented at a low angle (fZ0–258) or high

angle (fZ155–1808) with respect to the shear zone

boundary, flanking structures develop a normal drag effect,

irrespective of the flow type (Fig. 4).
3.1. Co-shearing, counter-shearing and non-shearing

structures

Structures Ga and Gb do not develop any offset and any

drag instantaneously, as they have the same orientation as

the non-shearing ISA2 and ISA1, respectively. Conse-

quently, they mark the boundary between co-shearing

structures, i.e. shear bands and s-type flanking folds, and

counter-shearing structures, i.e. a-type flanking folds.
3.2. Co-rotating or counter-rotating structures

Assuming a constant Wk, the change in orientation and

the sense of rotation of the CE during progressive

deformation can be determined when following vertical

lines from the point representing the initial orientation in the
Fig. 3. Calculated deformation of the central marker line, where the vert

marker line between two repeating CE, for different flow types of dextral

The fault angle varies between fZ108 and 1708 ((a)–(q)). a is the angle b

and aZ908 for pure shear. The marker lines are labelled with letter codes

Fig. 4. Different line patterns are used for co-, non- and counter-rotating C

either ISA2 or ISA1.
diagram (Fig. 4). For example the CE of structures Ga and

Gb will, therefore, in almost all cases (except the

transpressional pure shear end member Ga) rotate towards

higher angles f during progressive deformation as they plot

in the field of co-rotation. Structures Ga will develop into

a-type flanking folds, which are always co-rotating.

Depending on the flow type and the angle f, structures

H–K will develop. Structures Gb will develop into s-type

flanking folds (structures L, M and O). Similar to the results

for shear bands (Grasemann et al., 2003), s-type flanking

folds can either co- or counter-rotate depending on Wk and

the initial orientation of the CE. For the case of pure shear

(WkZ0), s-type flanking folds and shear bands will always

counter-rotate irrespective of the angle f, which can range

between fZ0–908 for shear bands and fZ90–1808 for

s-type flanking folds. With increasing Wk, the probability of

counter-rotation of the CE decreases (i.e. structures A and D

for shear bands and structures N and Q for s-type flanking

folds). Remaining shear band types will always be co-

rotating, in which case the probability of shear band

development (structures C and F) progressively decreases

away from the transpressional pure shear end member and is

limited to small angles fw10–308 in transtension. At the

same time the probability of co-rotating s-type flanking fold

development (structures L and O) progressively decreases

away from the transtensional pure shear end member and is

limited to high angles fw150–1708 in transpression.
3.3. Non rotating and stable-metastable CE orientations

Only in the case of the transpressional pure shear end

member Ga does a metastable structure form, and this can

either develop into a reverse drag shear band or an

extensional a-type flanking fold (Fig. 4). Gb on the

transtensional pure shear side remains stable.

Structures that form in the area on the graph in Fig. 4

marked by thick black bold and dashed lines will develop

into stable and metastable structures, respectively, as the CE

is not rotating.

For stable structures (structures B, Gb and M), a

deviation from the non-rotating orientation of the CE results

in an immediate co- or counter-rotation back into the

original non-rotating position. This is the case where

arrowheads in Fig. 4 are pointing in opposing directions

towards the stable structure. For metastable structures

(structures E, Ga and P), however, a slight deviation of f
ical instantaneous velocity uj is plotted for the length of the central

transtension (see Grasemann et al. (2003) for dextral transpression).

etween the eigenvectors of the flow, where aZ08 for simple shear

corresponding to the instantaneous flanking structures classified in

Es. Thick dotted lines show orientations of CEs that are parallel to
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Fig. 4. Diagram illustrating the instantaneous development of flanking structures in transtension and transpression as a function of the flow

type (horizontal axis) and the initial orientation of the CE (vertical axis), based on the modelling results in Fig. 3 and Grasemann et al. (2003).

Each field with a letter code represents an individual initial starting condition for the numerical simulation. See text for details.
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from the non-rotating orientation will result in a progres-

sive, irreversible, either co- or counter-rotation of the CE.

This is the case where arrowheads point in opposing

directions away from the metastable structure. Accordingly,

in transtension, s-type flanking folds are the only structures

that have the ability to form stable orientations. They can

become (or remain) non-rotating for orientations of fZ90–

1508 and are metastable if fZ150–1808. In transpression,

shear bands will be the only structures that can form stable

orientations. Strictly speaking, structures Ga and Gb on the

very left and right pure shear lines do not represent flanking

structures as they are non-shearing. Structure Ga, however,

forms a metastable structure that can either co-rotate during

progressive deformation to develop an a-type flanking fold

or counter-rotate into a reverse drag shear band. Gb on the

pure shear transtension side will not rotate at all and will

keep a stable position without a change in orientation.

Although only thick black lines in the graph in Fig. 4

represent orientations where the rotation velocity is exactly
zero, our modelling shows that for orientations deviating in

a range of w10–208 in both directions (a and f), rotation

velocities become negligibly small. Consequently in nature,

even in very high strain shear zones, structures within this

range of orientation will most likely be preserved and can be

thought of as being stable. Fig. 5 is an alternative and more

concise representation of Fig. 4, where the four general

geometrical types of flanking structures with their corre-

sponding mirror images are emphasized in eight different

fields.
4. Modelling applications and comparison with natural

examples

Grasemann and Stüwe (2001) and Grasemann et al.

(2003) noted that the misinterpretation of a-type flanking

folds as shear bands lead to the wrong interpretation of the

overall sense of shear. According to their model, s-type
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flanking folds are, like thrusts, reliable kinematic indicators.

However, the broadening of their modelling to a transten-

sional setting in this work reveals that not only shear bands

but also s-type flanking folds are not infallible shear sense

indicators, as they can be confused with contractional a-type

flanking folds. Especially in transtension, both contractional

a- and s-type flanking folds can develop across a large

geometrical range. The following two natural examples are

discussed in detail in order to illustrate the practical problem

of conflicting shear sense resulting from misinterpretation

of contractional a- and s-type flanking folds.

4.1. Contractional a-type flanking folds

Fig. 6a shows a plan view of a contractional flanking

structure within a major strike-slip zone, which could be

interpreted in two ways; either as a dextral s-type flanking

fold or a sinistral contractional a-type flanking fold (see

Figs. 1 and 5). As the overall movement is known to be left-

lateral from boudinaged quartz veins and sigmoidal quartz

clasts elsewhere in the outcrop (Passchier et al., 2002), the

structure can be identified as a contractional a-type flanking

fold. The natural example is in perfect accordance with the

modelled structure (Fig. 6b) and shows several character-

istics: the displacement along the fault decreases away from

point (C), in both directions, downsection and upsection

(layers b, c and e) to become zero at the fault tip (T). Note

that only for the central marker layer (d) is the drag in the

footwall symmetric to the drag in the hanging wall. With

increasing distance away from (C), the drag between layers

in the footwall and hanging wall becomes more and more

asymmetric towards the fault tip (layers b, c and e). The

asymmetry can be expressed by the relationship of the layer

parallel distance in the footwall (df) and the hanging wall

(dh), along which the layer is influenced by a drag along the

fault (Fig. 6c). As a general rule for contractional flanking

structures, the distance that is larger (either df or dh) always

points towards the fault tip (T) in the direction of shear,

whereas the shorter distance always points towards the

centre of the fault (C). Therefore, in cases where only parts

of the fault are exposed or the correlation of offset layers is

difficult, this general rule can help to locate the relative

position along the fault and extrapolate the entire geometry

of the structure.

Fig. 6d shows one possible numerically modelled

evolution for the natural example (Fig. 6a), which is

dominated by transtensional simple shear flow (WkZ0.98).

The structure starts to develop at an initial fault angle

fZ408 (stage 1) and co-rotates 148 to its final orientation of

fZ548 (stage 2), developing a contractional a-type flanking

fold. If deformation proceeds, the fault will further co-rotate

to develop an extensional a-type flanking fold (stage 3).

Note that although the modelled structure dominated by

simple shear perfectly coincides with the observed one, the

structure could develop the same geometry with a greater

pure shear component. For example, the same finite
structure could be reproduced under extensional pure

shear (WkZ0) with less fault rotation (initial fZ508).

Therefore we see that one single structure is not indicative

of the flow type. Also note that instead of the modelled slip

where the shear stress is zero, some shear stress along the

fault will reduce the drag effect (Reches and Eidelman,

1995; Grasemann and Stüwe, 2001). Consequently, as the

friction along the fault at the time of formation is unknown,

a direct deduction of the kinematic vorticity is not possible.

4.2. s-type flanking folds

Fig. 7a shows a vertical outcrop section from a SW-

directed fold and thrust belt in the structurally higher portion

of the Himalayas (NW-India) and highlights an example in

which a fault-related fold develops with pronounced and

symmetric hanging wall and footwall deformation. Fault

displacement distance relationships (Williams and Chap-

man, 1983; Hedlund, 1997) reveal that the displacement not

only decreases towards the upper fault tip (T) to become

zero, but also shows the same characteristics in the opposite

direction, downsection. Consequently, the maximum dis-

placement occurs in the central part of the fault, a feature

also described for outcrop scale fault-cored folds from

McConnell et al. (1997). The progressive development of

the structure (Fig. 7c) has been modelled in general shear

transtension (WkZ0.87), with an initial fault angle of

fZ408 (stage 1). As the fault co-rotates towards a higher

angle fZ1458 (stage 2), an s-type flanking fold starts to

develop. After ongoing slip along the fault and further

rotation, the folds reveal both a pronounced footwall

syncline and hanging wall anticline (stage 3). Despite the

good consistency between the natural and modelled

structures, the fold shape and displacement distance

relationships are relatively insensitive to Wk and a similar

final geometry can be obtained across a broad range of Wk

depending on the initial orientation and amount of rotation

of the fault (CE). Although we are confident that the

structure shown in Fig. 7a represents an s-type flanking fold

because the SW-directed transport in the section is well

established in detail (Wiesmayr and Grasemann, 2002), the

structure could, in contrast, reveal a contractional a-type

flanking fold with the opposite shear sense. Hence, the

correct interpretation of a single structure without additional

kinematic information is problematic and is discussed in the

following section.

4.3. Determination of flanking structures for the use as shear

sense indicators

In nature, the four general geometrical types of flanking

structures (Fig. 1) can be easily identified using the

following criteria: (1) whether the offset along the CE is

contractional or extensional and (2) whether the bending of

the HE (i.e. the drag) is convex or concave in the direction

of shear. However, the determination of an individual



Fig. 5. Alternative presentation to Fig. 4 for the instantaneous development of flanking structures, where the four general geometrical types

with their corresponding mirror images are emphasized.
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structure without additional knowledge of the bulk shear

sense is not reliable. As a consequence, the shear sense from

a single structure alone is ambiguous, as theoretically a

corresponding mirror image always exists (Figs. 1 and 5).

Nevertheless, if more than one flanking structure is

developed together, they may be used to uniquely identify

the structures and to determine the bulk shear sense. Such an

application is shown in Fig. 8, where finite structures are

plotted in the diagram for instantaneous structural develop-

ment. Fig. 8a and c depicts differently annotated identical
photographs showing two flanking structures side by side

that are developed within metamorphic layers of a marble

mylonite from the Naxos metamorphic core complex

(Greece). If a dextral shear sense is assumed (Fig. 8a), the

two structures have angles fZ808 and 1258 between the CE

and the shear zone boundary and they therefore have to be

interpreted as a contractional reverse drag a-type flanking

fold and an extensional reverse drag a-type flanking fold,

respectively. If we assume that the structures in Fig. 8 record

low strain and therefore only a rotation of a few degrees, the



Fig. 6. Characteristics of contractional a-type flanking folds. (a) Natural example from major NE–SW-trending left lateral strike slip zone in

Namibia [S20840 033.0 00 E14825 049.8 00] C—centre of the fault, T—fault tip, a—layer not affected by faulting, b, c, e—layers affected by

faulting, creating asymmetric drag in the footwall with respect to the hanging wall, d—central marker layer, where displacement is largest

and drag in the footwall is symmetric to drag in the hanging wall. (b) Corresponding structure obtained by mechanical modelling. (c) Close-

up of (b) showing asymmetric drag between footwall and hanging wall from which the T and C can be inferred. (d) Progressive flanking fold

evolution where for each stage the fault angle f is shown. For stages 2 and 3 the corresponding deformation gradient tensor D is given.
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contractional a-type flanking fold probably formed at an

angle of fw708. They can therefore only coexist within a

flow type between aZ248 (transtension) and aZ528

(transpression), where these structures will plot together as

points on a vertical line of constant vorticity (Fig. 8b).

Alternatively if a sinistral shear sense is assumed (Fig. 8c),

the two structures have to be interpreted as a reverse drag

s-type flanking fold and a reverse drag shear band, with

finite angles fZ1008 and 558, respectively. However, under

the same argument of constant vorticity, these structures can

never plot as points along a common vertical line (Fig. 8b)

as reverse drag shear bands cannot develop under the flow
conditions where s-type flanking folds with a specific

orientation of fZ1008 form. Consequently, a sinistral

interpretation of the mylonitic shear zone can be excluded,

and this is consistent with abundant independent shear sense

criteria that exist for the region from other studies

(Structural Processes Group, work in progress).

However, note that although in this example the

structures can be used for the determination of the shear

sense (dextral), they can still form under a broad range of Wk

from simple shear dominated transtension (WkZ0.9;

aZ248) to general shear transpression (WkZ0.6; aZ528).

Other coexisting flanking structures (e.g. normal drag shear



Fig. 7. (a) Superb example of an s-type flanking fold formed within Jurrassic Limestones in the Pin Valley in Spiti, N-India (N32805 034, 67 00,

E78809 020, 38 00). Looking SE. C—centre of the fault, T—fault tip. (b) Corresponding structure obtained by mechanical modelling. (c)

Progressive flanking fold evolution where for each stage the fault angle f is shown. For stages 2 and 3 the corresponding deformation

gradient tensor D is given (courtesy of Mario Habermüller and Klaus Arnberger).
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bands and extensional normal drag a-type flanking folds or

normal drag shear bands and high angle reverse drag s-type

flanking folds) would indicate a much narrower range for

pure shear transpression and transtension, respectively, and

could therefore not only be used as shear sense, but also

flow-type indicators.
5. Discussion

5.1. Fault drag

Normal drag along faults is a well established and

described phenomenon and has even been used as a shear

sense criterion in structural geology textbooks (e.g. Hills,

1963; Billings, 1972; Twiss and Moores, 1992). The

generally accepted intuitive explanation is that normal

fault drag formed by a reduction in the flow velocity of the

wall rocks by the frictional resistance along the fault.
Observations of reverse drag or gradual change from normal

to reverse drag along faults question this interpretation,

however. Hamblin (1965) suggested a model in which

normal movement along a listric fault results in an

additional volume in the hanging wall in which the rocks

collapse, thereby forming reverse fault drag. This expla-

nation is still generally accepted (Tearpock and Bischke,

2003, and references cited therein).

This study and published mechanical models (Grase-

mann et al., 2003) that examine perfectly frictionless faults

without volume change both predict geometries that

completely match natural structures and we are implying

that the above explanations cannot be accepted as a general

rule for the formation of normal and reverse drag structures

associated with faults. As an alternative, we conclude with

Barnett et al. (1987) and Reches and Eidelman (1995) that

most of the observed drag effects are the result of flow

perturbation within the host rocks induced by motion along

the fault. Interestingly, Grasemann et al. (2003) showed



Fig. 8. Application of the diagram of instantaneous development of

flanking structures for the determination of the bulk shear sense.

The identification of flanking structures within a marble mylonite

from Naxos (Greece) [N37811 026, 2 00, E25830 048, 8 00] depends on

the inferred shear sense. (a) Dextral interpretation. (b) Diagram of

instantaneous development of flanking structures with structures

from (a) and (c) plotted as points (structures are labelled after the

four general geometrical types of flanking structures; see Fig. 1).

(c) Sinistral interpretation.
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with their model results that normal drag will form

completely insensitive to the kinematic vorticity number

of the bulk flow at low angles (!258) between the shear

zone boundary and a fault, dipping either with or against the

shear direction. This observation is probably confirmed by

natural examples (Passchier, 1984), although detailed

investigations are still lacking.

The present work confirms the model results of

Grasemann et al. (2003) and extends their observations to

transtensional shear zones where, similarly, the fault drags

of the central marker lines are only normal if the marker

lines meet the fault at low angles; otherwise fault drag is

always reverse.

5.2. Flanking structure development as flow type indicators

(transpression vs. transtension)

The extension of our modelling for plane strain

transtension predicts that all three types of flanking

structures can develop instantaneously, but with different

probability. In transtension, the likeliness of shear band

development decreases from simple shear to become zero at

the pure shear transtension end member. It is rather unlikely

that shear bands will be preserved in natural widening shear

zones, as the CE will immediately co-rotate towards higher

fault angles and will be reactivated to form contractional

a-type flanking folds (Figs. 4 and 5). Accordingly, a- and

s-type flanking folds are the preferred structures forming

within a large geometrical range in transtension. Grasemann

et al. (2003) have shown that shear bands are the only stable

structures in transpression (structures B in our Fig. 4), and

will therefore most likely be preserved in transpressional

shear zones. In contrast to that, s-type flanking folds form

the only stable structures in transtension at angles fZ90–

1558 as a function of the kinematic vorticity and are

represented by thick bold lines in Figs. 4 and 5 (structures B

and M in Fig. 4). Note that flanking structures in the vicinity

of the line of stable structures (f, aG10–208) are also very

likely to be preserved in natural shear zones and can be

referred to as stable as the rotation rates are still very small

with respect to high effective shear strains. Although we are

aware that we only modelled low strain structures, up to gZ
2–3, the same flanking structure geometries are obtained for

high strains (e.g. Exner et al., 2004; Kocher and Manckte-

low, 2004), where one could expect structures like foliation

boudinage to develop. As a consequence, a conspicuously

frequent occurrence and preservation of s-type flanking

folds would be indicative of transtension (i.e. layer parallel

shortening and shear zone thickening normal to the shear

zone boundaries). Note, however, that at even larger shear

strains (gw5–7) s-type flanking folds will start to become

unrecognisable (Exner et al., 2004).

5.3. Comparison with existing fault related fold models

Plane strain transtensional flow strongly resembles the
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tectonic boundary conditions in compressional fold and

thrust belts, where there is a shortening parallel to and

thickening normal to a basal detachment probably including

a non-coaxial component due to back-shear. Our natural

examples show that flanking structures develop at different

scales, from the outcrop scale within ductile shear zones up

to mesoscopic scale faults in fold and thrust belts (Figs.

6–8). Several classic kinematic and mechanical models for

fault-related folds have been established, which either

explain the development of hanging wall anticlines, like

fault bend folding (Suppe, 1983; Salvini et al., 2001) and

fault-propagation folding (Suppe, 1985; Suppe and

Medwedeff, 1990) or explain both; the development of

footwall synclines and hanging wall anticlines, like trishear

fault-propagation folding and forced folding (Erslev, 1991;

Allmendinger, 1998; Johnson and Johnson, 2002) or break-

thrust folding (Fischer et al., 1992; Woodward, 1997) or a

combination of trishear fault-propagation folding and break

thrust folding (Erslev and Mayborn, 1997).

The fundamental difference between our model for the

development of flanking structures and those mentioned

above is that we incorporate the following three character-

istics: (1) the fault does not necessarily maintain a stable

orientation, but can either co- or counter-rotate during

progressive development. (2) The displacement along the

fault has its maximum in the centre of the fault and

decreases with the same ratio downsection as it increases

upsection towards the fault tip as is shown by McConnell

et al. (1997) for several outcrop scale natural examples.

Because the fault in this case does not continue into a

bedding parallel detachment to join an upper and/or lower

flat, the fault displacement–distance relationships will be

fundamentally different. (3) The tip of the fault remains

stationary, while displacement continues, as is the case for

tip-line folds (Williams and Chapman, 1983) and fault

displacement gradient folds (Wickham, 1995), which

Thorbjornsen and Dunne (1997) call fault arrest folds.

Other models, which closely resemble the natural

example of Fig. 7 with symmetrical hanging wall and

footwall deformation, are those of (1) relay zones between

segmented thrust faults (Nicol et al., 2002) and (2)

symmetrical limb wedge thrusts, where fault-bend folds

form in both the hanging wall and the footwall (Mitra,

2002). However, there are differences between these models

and ours. Relay zones necessarily need two faults to form,

while flanking folds form along a single fault. In contrast to

symmetrical limb wedge thrusts, where the fault passes into

layer-parallel detachments, firstly the fault in flanking folds

is pinned, and secondly, layers form a footwall and hanging

wall cut-off and exhibit reverse drag in the vicinity of the

fault tip (Fig. 7) instead of continuing fault-parallel (for at

least half the distance of the maximum displacement), as is

characteristic for fault-bend folding. Another difference of

our model to that of many other fault-related fold models

where layering plays a key role is that here layering behaves

in a purely passive manner.
Our modelling boundary conditions cover the entire

range from simple shear over general shear to the pure shear

end member and it is straightforward to compare flanking

structures with existing fault-related fold models and

tectonic settings that have similar boundary conditions,

and to deduce the differences and consequences that arise

for cross-section interpretation. For example, boundary

conditions for fault-bend folds with fault-parallel flow

(Egan et al., 1999), which mostly require additional back

shear at the trailing edge and a flexural slip mechanism,

resemble those of simple shear dominated s-type flanking

folds. Fault propagation fold models that require layer-

parallel shortening and layer-normal thickening by pene-

trative strain (e.g. Mitra, 1990) can be compared with pure

shear dominated end members of s-type flanking folds.

From the features discussed above, fundamental con-

sequences for balancing and restoration techniques arise

from three salient observations: (1) the fault related to

folding does not join a layer-parallel or common detach-

ment (e.g. fig. 3 in Mitra, 1990); a situation for which no

alternative balanced model exists up to now. (2) Faults may

rotate during progressive deformation, a fact that is

considered in none of the established restoration pro-

cedures; restored fault trajectories will look markedly

different if this phenomenon is taken into account. (3)

Flanking structure development accompanies footwall

deformation and must be considered in the restoration

procedure, as already critically commented by Ramsay

(1992); footwall deformation might have been under-

estimated or simplified in many fault related fold models

and is much more common than literature has previously

suggested.
6. Conclusions

The broadening of the regime of flanking structure

development to include transtension (i.e. layer parallel

shortening and layer normal thickening) from pure shear to

the simple shear end member reveals that four general

geometrical types of flanking structures exist, and that these

can be distinguished by (1) the extensional or contractional

offset and (2) the normal or reverse drag of the central

marker layer.

For each of these four general types, a corresponding

mirror image with the opposite sense of shear along the fault

(CE) exists, bestowing an ambiguity even for thrusting

kinematics, when flanking structures are used as shear sense

indicators. If at least one additional flanking structure that

developed at a separate stage of progressive deformation is

preserved, it is in many cases possible to deduce the overall

shear sense and, under favourable conditions, to estimate the

flow type.

While shear bands are indicative of transpressional

tectonic settings, development and preservation of shear

bands in transtension is limited. Flanking folds of a- and
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s-type are the preferred structures forming within a large

geometrical range in transtension. S-type flanking folds

represent the only stable structures in transtension at fault

angles fZ90–1558, depending on the kinematic vorticity.

Flanking structures develop at different scales, from

microscopic to outcrop, within ductile shear zones up to

mesoscopic or probably even macroscopic faults in fold and

thrust belts. Flanking folds therefore (and especially s-type

flanking folds) have to be considered as a new important

addition to existing fault-related fold models (i.e. fault-bend

folds, fault-propagation folds, detachment folds and break-

thrust folds).

The fundamental differences of our model to existing

fault-related fold models are: (1) the fault does not neces-

sarily maintain a stable orientation but may rotate during

progressive development; (2) the drag can change from

reverse to normal along the fault; and (3) the displacement

along the fault has its maximum in the centre of the fault and

decreases to zero in both directions, downsection and

upsection towards fixed fault tips, in contrast to fault propa-

gation folds, where it only decreases upward or remains

constant in break-thrust folds. Flanking structures are not

associated with, and do not require, ramp flat geometries, as

in fault-bend folds or fault-propagation folds.

As flanking structures always cause footwall defor-

mation, they provide an attractive explanation for the

development of joined footwall synclines and hanging

wall anticlines and should therefore be considered and

re-investigated in the cross-section restoration procedures

and structural interpretations, as we believe that footwall

deformation has been underestimated and simplified in

many fault-related fold models.
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